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ABSTRACT

Changes in precipitation characteristics directly affect society through their impacts on drought and floods,

hydro-dams, and urban drainage systems. Global warming increases the water holding capacity of the atmo-

sphere and thus the risk of heavy precipitation. Here, daily precipitation records from over 700 Chinese stations

from 1956 to 2005 are analyzed. The results showa significant shift from light to heavy precipitation over eastern

China. An optimal fingerprinting analysis of simulations from 11 climate models driven by different combi-

nations of historical anthropogenic (greenhouse gases, aerosols, land use, and ozone) and natural (volcanic and

solar) forcings indicates that anthropogenic forcing on climate, including increases in greenhouse gases (GHGs),

has had a detectable contribution to the observed shift toward heavy precipitation. Some evidence is found that

anthropogenic aerosols (AAs) partially offset the effect of the GHG forcing, resulting in a weaker shift toward

heavy precipitation in simulations that include theAA forcing than in simulationswith only theGHG forcing. In

addition to the thermodynamic mechanism, strengthened water vapor transport from the adjacent oceans and

by midlatitude westerlies, resulting mainly from GHG-induced warming, also favors heavy precipitation over

eastern China. Further GHG-induced warming is predicted to lead to an increasing shift toward heavy pre-

cipitation, leading to increased urban flooding and posing a significant challenge for mega-cities in China in the

coming decades. Future reductions in AA emissions resulting from air pollution controls could exacerbate this

tendency toward heavier precipitation.

1. Introduction

Precipitation is an important component of Earth’s

hydrological and energy cycles (Trenberth et al. 2007).

Almost all water supplies that sustain terrestrial ecosys-

tems, agriculture, and human life come fromprecipitation;

however, precipitation can also be damaging. Too much

heavy precipitation and too little light precipitation

can cause severe flooding and drought, respectively,

both of which can cause devastating damages to agriculture,

infrastructure, and human life (IPCC 2012). Because of

this, potential changes in precipitation ‘‘characteristics’’

in climate projections and observations have been a

key subject of research (e.g., Allen and Ingram 2002;

Trenberth et al. 2003; Lau and Wu 2007; Sun et al. 2007;

IPCC 2007, 2013; Liu et al. 2009; Pall et al. 2011; Shiu et al.

2012; Lau et al. 2013).

There are many causes of changes in precipitation.

The leading cause is the increase in atmospheric wa-

ter vapor content associated with rising air tempera-

tures. Atmospheric water vapor increases roughly at the

Clausius–Clapeyron rate of 7%K21 based on theoretical

arguments (Trenberth et al. 2003), observations (Trenberth
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et al. 2005; Dai 2006a; Willett et al. 2010; Zhao et al. 2012),

andmodel simulations (Held and Soden 2006; Pall et al.

2007; Sun et al. 2007). In response to greenhouse gas

(GHG)-induced global warming, climatemodels project

that global mean precipitation will increase at rate of

1%–3%K21 (IPCC 2007, 2013; Held and Soden 2006;

Sun et al. 2007). This reduced increase in global mean

precipitation relative to the increase in water vapor is a

result of the surface and atmospheric energy constraints

on global mean precipitation rates (Allen and Ingram

2002; Pendergrass and Hartmann 2014). Trenberth et al.

(2003) argued that precipitation intensity from storms is

likely to increase with the increasing rate of water vapor

(;7%K21), which implies that precipitation frequency

should decrease. This thermodynamic argument has

roughly held true in many subsequent analyses of climate

model projections (e.g., Sun et al. 2007; Chou et al. 2012;

Lau et al. 2013) and historical data (e.g., Goswami et al.

2006; Qian et al. 2007; Allan and Soden 2008; Liu et al.

2009; Shiu et al. 2012; Lau andWu2007;Westra et al. 2013;

Ma et al. 2015).

Another cause of precipitation change is anthropo-

genic aerosols (AAs), which can impact precipitation

characteristics through complex aerosol–cloud–climate

interactions and through the scattering and absorption

of incoming solar radiation (Rosenfeld et al. 2008; Lee

et al. 2014). In addition to their effects in the tropo-

sphere, aerosols cool the surface, which offsets the

GHG-induced warming and thus its impact on pre-

cipitation (Mitchell et al. 1995; Chen et al. 2011). An-

thropogenic aerosols have been found to weaken the

South Asian summer monsoon (Bollasina et al. 2011)

and to cause a tendency for global dry land regions to

becomewetter andwet regions to becomedrier during the

second half of the twentieth century (Sun et al. 2012).

Anthropogenic aerosols have had a detectable contribu-

tion to the decrease in monsoon precipitation in the

Northern Hemisphere (Polson et al. 2014) and the

weakening of the hydrological cycle between the 1950s

and the 1980s (P.Wu et al. 2013).AA loading over eastern

China (EC) has been among the highest in the world

during the last several decades due to the rapid economic

development in the region. Previous studies suggest that

AAare partly responsible for the summer ‘‘southern flood

and northern drought’’ trend over EC associated with the

weakening of summer monsoon circulation (Jiang et al.

2013; Ye et al. 2013; L. Wu et al. 2013; Song et al. 2014)

and recent changes in precipitation characteristics over

EC (Qian et al. 2009; Fu and Dan 2014).

High-impact floods and droughts are closely related to

the tail behavior of the frequency and amount distributions

of daily precipitation (Goswami et al. 2006). Light and

heavy precipitation events, which are, respectively, closely

related to drought (Dai 2011, 2013) and floods (Dai 2016),

are likely to be more sensitive to anthropogenic emissions

than themean precipitation amount (Trenberth et al. 2003;

Sun et al. 2007;Westra et al. 2013; Zhao andDai 2015). The

human-induced GHG increases have had a detectable ef-

fect on the observed intensification of extreme heavy pre-

cipitation during the second half of the twentieth century

(Min et al. 2011; Zhang et al. 2013) and the observed in-

tensification of the hydrologic cycle after the 1980s (Polson

et al. 2013; P.Wu et al. 2013). Nonetheless, the detection of

regional precipitation change has been a challenge outside

of the Arctic (Min et al. 2008), and whether anthropogenic

climate change ismanifested through a detectable effect on

East Asian precipitation remains unknown.

In this study, we investigate the influences of historical

GHG, AA, and other climate forcing agents on the ob-

served changes in the amount distributions of daily pre-

cipitation over EC from 1956 to 2005 and by comparing

them to those simulated by climate models. Optimal fin-

gerprinting (Allen and Stott 2003), which is widely used in

detection and attribution studies (Polson et al. 2013, 2014;

Min et al. 2011; P. Wu et al. 2013; Zhang et al. 2013), is

employed to further determine whether the observed

changes in the amount distributions of EC precipitation

have been caused by external forcings and are thus de-

tectable. In addition, because of the greater contribution

of internal variability and greater errors in climate

models’ representation of regional details at smaller spa-

tial scales (IPCC 2013), it become more difficult to detect

and attribute the change precipitation amount distribu-

tion at smaller spatial scales. Meanwhile, as indicated in

previous study (Liu et al. 2015), the compensation effect

with large spatial averaging (entire eastern China region)

is neither a common nor a serious problem, but rather the

sporadic nature of precipitation makes it difficult to

derive a significant signal when data from a very limited

number of station are used. Thus, the detection and at-

tribution analyses on changes in the distribution of the

daily precipitation amount were focused on eastern China

as a whole. Finally, the possible physical mechanisms be-

tween the external forcings and the changes in daily pre-

cipitation over EC are explored.

The remainder of the paper is organized as follows.

Section 2 describes the data and method used in the study.

The results of the study are given in section 3. Major find-

ings are summarized in section 4 along with a discussion.

2. Data and method

a. Data description

Rain-gauge data of daily precipitation from 1956 to

2005 were obtained from the China Meteorological
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Administration (CMA; http://data.cma.cn/en). The CMA

dataset contains 756 stations and is updated through

recent years; we used data only up to 2005 to be con-

sistent with the available climate model historical

simulations, which end in 2005. After excluding those

stations whose site may have been changed or whose

record lengths is insufficient, we retained 436 stations

over EC (approximately 188–438N, 1008–1258E) in our

calculations. Monthly precipitable water and atmo-

spheric column water vapor flux data obtained from the

Japanese 55-year Reanalysis (JRA-55; Ebita et al. 2011)

were also used.

We used a total of 147 simulations from historical

experiments performed by 11 models from phase 5

of the Coupled Model Intercomparison Projection

(CMIP5, see Tables 1 and 2; Taylor et al. 2012). Here,

we considered five groups in the historical climate

simulations. These include simulations forced with

1) estimates of changes in all important external forc-

ings (ALL forcings), which combines anthropogenic

(greenhouse gases, aerosols, land use, and ozone) and

natural (volcanic and solar) forcings, 2) anthropogenic-

only forcing (ANT forcing), 3) GHG-only forcing

(GHG forcing), 4) anthropogenic aerosol-only forcing

(AA forcing), and 5) natural-only forcing (NAT forcing).

The composition of each group and the ensemble size of

the simulations of each model are listed in Table 2. The

preindustrial control simulations (CTL) were also used to

estimate natural internal variability in the climate models.

b. Calculation of precipitation characteristics

As in Ma et al. (2015), for a given station (grid) and

year (season), precipitation frequency in each intensity

interval is the ratio (in percent) of the number of days

whose daily precipitation rate is within the corre-

sponding intensity interval to the number of all days

with data; the precipitation amount in each intensity bin

is the accumulated precipitation amount over the pre-

cipitation days within the corresponding intensity in-

terval. To estimate the regionally averaged precipitation

amount and frequency at each intensity interval, at each

station and model grid, the annual (seasonal) pre-

cipitation amount and frequency at each intensity bin

were calculated. Then, for the observations, the station

annual (seasonal) precipitation amount and frequency

of each intensity bin were interpolated onto a 0.58 3 0.58
grid using the iterative improvement objective analysis

(NCAR 2012), and these 0.58 grid cells were averaged

TABLE 1. Details of the 11 CMIP5 models used in the study. AA forcing agents are defined as follows: C is 3D aerosol distributions

specified as monthly 10-yr mean aerosol concentrations, derived using the CAM–Chemistry model, which is driven by Lamarque et al.

(2010); AAs include organic carbon (OC), black carbon (BC), and sulfur dioxide (SO2). E1 is AA emissions taken from Lamarque et al.

(2010). E2 is the same as E1, but with BC increased uniformly by 25% and organic aerosol increased by 50% (Rotstayn et al. 2012). SD is

anthropogenic sulfate aerosol accounting only for direct effects. SA is anthropogenic sulfate aerosol accounting for both direct and

indirect effects. (Acronym expansions are available online at http://www.ametsoc.org/PubsAcronymList.)

Model

name

Horizontal

resolution

(lat3 lon grid points) Institute

Anthropogenic

aerosol

forcing agents

Aerosol

effects

1 CanESM2 64 3 128 Canadian Centre for Climate Modelling

and Analysis, Canada

E1 SA

2 CCSM4 192 3 288 National Center for Atmospheric Research,

United States

C SD

3 CESM1(CAM5) 192 3 288 NSF–DOE–NCAR, United States E1 SA

4 CNRM-CM5 128 3 156 Centre National de Recherches Météorologiques
and Centre Européen de Recherches et de

Formation Avancée en Calcul Scientifique, France

E1 SA

5 CSIRO Mk3.6.0 96 3 192 Commonwealth Scientific and Industrial Research

Organisation–QueenslandClimate Change Centre of

Excellence, Australia

E2 SA

6 GFDL CM3 90 3 144 NOAA/GFDL, United States E1 SA

7 GFDL-ESM2M 90 3 144 NOAA/GFDL, United States E1 SD

8 HadGEM2-ES 145 3 192 Met Office Hadley Centre, United Kingdom E1 SA

9 IPSL-CM5A-

LR

96 3 96 L’Institut Pierre-Simon Laplace, France E1 SA

10 MIROC-ESM 64 3 128 Atmosphere and Ocean Research Institute,

National Institute for Environmental Studies,

and Japan Agency for Marine-Earth

Science and Technology, Japan

E1 SA

11 NorESM1-M 96 3 144 Norwegian Climate Centre, Norway E1 SA
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using the area as weight to calculate regional averages

for each intensity bins. For simulations, for each bin,

annual area-weighted means were computed on the

original model grid cells over each bin, and the multi-

model ensemble mean (MME) was calculated by first

calculating ensemble means from individual models and

then averaging over the available models.

For example, to obtain the long-term mean histo-

grams of daily precipitation amount and frequency over

eastern China (shown in Fig. 1), at each station and grid,

daily precipitation was divided into 100 intensity bins

with a bin size of 1mmday21, and the annual pre-

cipitation amount, and frequency at each intensity bin

were calculated. Then observed regionally averaged

precipitation amount and frequency at each bin were

calculated after the station annual precipitation amount

and frequency were interpolated onto a 0.58 grid (for

other grids, such as 1.58 and 2.58, the methods of calcu-

lating regional averages were similar and figures are not

shown). The simulated regionally averaged precipitation

amount and frequency at each bin were calculated on the

individual model’s original grids and then themultimodel

ensemble mean was calculated.

The current GCMs tend to produce too much light

and moderate precipitation while missing most heavy

and extreme precipitation events (Fig. 1). Thus, when

investigating the changes in the distributions of fre-

quency and of amounts of daily precipitation over

eastern China, following previous studies (Allan et. al.

2010; Chou et al. 2012; Shiu et al. 2012), first, the ob-

served and historical simulated daily precipitation data

at each station and model grid over eastern China were

ranked from light to heavy for the period 1956–2005,

respectively, and then 20 precipitation intensity bins at

each station and model grid were calculated by dividing

the long-term mean histograms of precipitation amount

into 20 bins with equal amount of precipitation. These

20 intensity bins were used to calculate histograms of

precipitation amounts at each observational station and

model grid for individual years, and then the area-

weighted averages were calculated. The ranges of each

percentile bin regionally averaged over eastern China

TABLE 2. Information on the number of simulations in the five historical experiments forced by ALL, ANT, GHG, AA, and NAT

forcing. The lengths of the CTL runs and the number of simulations for the representative concentration pathway 8.5 (RCP8.5) projection

are also included.

Model

ALL ensemble

size (runs)

ANT ensemble

size (runs)

GHG ensemble

size (runs)

AA ensemble

size (runs)

NAT ensemble

size (runs) CTL (yr)

RCP8.5 ensemble

size (runs)

CanESM2 5 — 5 5 5 1096 1

CCSM4 5 4 3 3 4 156 1

CESM1(CAM5) 1 — — 3 2 — 1

CNRM-CM5 10 10 6 — 6 500 1

CSIRO Mk3.6.0 10 5 5 5 5 850 1

GFDL CM3 5 3 3 3 3 800 1

GFDL-ESM2M 1 1 1 1 1 500 1

HadGEM2-ES 5 — 4 — 4 575 1

IPSL-CM5A-LR 6 3 3 1 3 1000 1

MIROC-ESM 3 — 3 — 3 630 1

NorESM1-M 3 — 3 1 1 201 1

Sum 11 models,

54 runs

6 models,

26 runs

10 models,

34 runs

8 models,

22 runs

11 models,

37 runs

10 models 11 models,

11 runs

FIG. 1. Long-term (1956–2005) mean annual histograms of yearly

(a) accumulated precipitation amount (mm) and (b) frequency of

occurrence (%) as a function of daily precipitation intensity from 0.1

to 100mmday21 (bin size is 1mmday21), averaged over EC. The

thick black lines are for the observations. The thick red, green, and

blue lines are forMME of the historical simulations from 11models,

5 high-resolution models, and 6 low-resolution models, respectively.

The thin gray lines are for individual model ensemble means.
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were listed in Table 3. Thus, the regionally averaged his-

tograms of the precipitation amount created here contain

both temporal and spatial variations. For instance, the re-

gionally averaged 95th percentile bin indicates the stron-

gest percent of precipitation in the time–space cumulative

distribution. Finally, changes in the regionally averaged

amount distribution of daily precipitation intensity as a

function of 20th percentile intensity bins were calculated

using linear least squares fits (Fig. 2).

c. Total least squares detection method

The optimal fingerprinting approach pioneered by

Hasselmann (1979, 1993), a frequently used method in

the detection and attribution analysis, is applied to the

multimodel ensemble mean and observed trends to de-

termine if external forcings caused the changes. Similar to

the methods used in previous studies (Zhang et al. 2007;

Polson et al. 2013), the ‘‘optimal fingerprint’’ method used

here (http://www.csag.uct.ac.za/;daithi/idl_lib/detect/,

version 3.1.2) assumes that the observed trend y (a rank-n

vector, where n is the number of daily precipitation in-

tensity bins, with n 5 20 used in this analysis) can be

represented via generalized total least squares fitting as

the sum of fingerprints or anomalous signals X (model

simulated climate responses to external forcings, a matrix

with one column for each external climate forcing), that is,

y5 b(X 2 y)1 m (Allen and Stott 2003). The term m is

the sampling error (i.e., noise) of y from the true anom-

alous response function underlying the real world, whiley

represents the same for the climate model responses

sampled from a small number of simulations. Two in-

dependent estimates of the internal variability covariance

structure needed for the optimization and uncertainty

analysis are estimated from the preindustrial control

simulations and intraensemble differences.

In this study, optimal fingerprinting is used for the

analysis in the direction of maximum signal-to-noise

rather than in the direction of highest signal. A principal

component analysis is performed on the first estimate of

internal variability covariance; for this analysis, all data

are projected onto this space and divided by the square

root of the respective eigenvalues. Since weaker prin-

cipal components need to be removed to avoid extreme

amplification of the projection onto poorly sampled

TABLE 3. Ranges of the 20 bins with equal total precipitation amounts (mmday21) corresponding to the observations (OBS) and 11

CMIP5 models. Each bin or range has a lower and upper limit. Shown here are the upper limits of bins 1–19 and the lower limit of bin 20;

the lower limit for bin 1 is 0.1mmday21.

Bin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

OBS 2.5 4.5 6.5 8.5 10.5 12.7 15 17.5 20.2 23.2 26.5 30.3 34.6 39.7 46.1 54.0 64.8 81.1 111.4 $111.4

CanESM2 1.8 3.2 4.4 5.4 6.4 7.3 8.3 9.3 10.5 12.0 13.8 16.2 19.1 22.6 26.5 31.4 37.4 46.0 60.9 $60.9

CCSM4 1.4 2.5 3.6 4.8 6.0 7.2 8.5 10.2 11.7 13.6 15.4 18.0 20.8 23.8 28.1 32.8 39.5 49.5 67.8 $67.8

CESM1(CAM5) 1.4 2.7 4.0 5.2 6.5 7.8 9.1 10.5 12.1 13.8 15.7 17.9 20.5 23.6 27.4 32.2 38.6 47.8 64.6 $64.6

CNRM-CM5 1.8 2.8 3.7 4.6 5.4 6.3 7.0 8.0 9.3 10.7 12.5 14.3 16.7 20.3 24.0 29.4 36.6 47.1 66.7 $66.7

CSIRO Mk3.6.0 1.7 3.4 4.9 6.5 8.0 9.6 11.3 12.9 14.6 16.4 18.4 20.4 22.7 25.3 28.2 31.7 36.0 41.8 51.2 $51.2

GFDL CM3 1.2 2.3 3.3 4.3 5.3 6.3 7.4 8.5 9.7 11.0 12.4 14.0 15.8 18.0 20.6 24.0 28.3 34.4 44.9 $44.9

GFDL-ESM2M 1.8 3.2 4.5 5.7 6.9 8.1 9.3 10.6 11.8 13.2 14.6 16.2 18.1 20.4 23.2 27.4 33.5 43.0 60.7 $60.7

HadGEM2-ES 1.4 2.5 3.6 4.8 6.0 7.2 8.6 10.1 11.8 13.7 15.8 18.3 21.2 24.7 29.0 34.6 42.0 52.6 70.6 $70.6

IPSL-CM5A-LR 1.6 3.0 4.2 5.3 6.3 7.3 8.3 9.3 10.2 11.3 12.4 13.6 15.0 16.7 18.9 21.9 26.4 33.4 46.5 $46.5

MIROC-ESM 1.6 3.0 4.4 5.7 7.0 8.3 9.5 10.8 12.1 13.5 14.9 16.5 18.2 20.2 22.5 25.4 29.1 34.6 43.9 $43.9

NorESM1-M 1.5 2.6 3.8 4.9 6.1 7.4 8.7 10.0 11.5 13.1 14.8 16.7 18.8 21.1 23.9 27.3 31.6 37.5 47.2 $47.2

FIG. 2. Linear trend in precipitation amount as a function of 20

precipitation percentile intensity bins with equal total precipitation

amount averaged over EC from 1956 to 2005, (a) observed trends in

rainy (red) and dry (blue) seasons. (b) Simulated trends of annual

precipitation amount derived from the MME of all external forcings

(red), anthropogenic forcing (brown), greenhouse gas forcing (blue),

anthropogenic aerosol forcing (orange), and natural forcing (green)

simulations, respectively. Gray bars and black lines in (a) and (b) are

for annual precipitation amount in the observations. Trends that are

statistically significant at the 0.05 level of a two-tailed Student’s t test

are marked by purple stars.
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patterns of variability, we truncate the data to the leading

16 empirical orthogonal functions (EOFs), determined

by a residual consistency check (Allen and Stott 2003),

and ensure that the regression residual is generally con-

sistent with the simulated noise estimates.More than 78%

of signal and noise variance is retained at this truncation.

If the scaling factors b are positive and significantly in-

consistent with zero at the one-sided 5% significance

level, then the simulated fingerprint response patterns to

the corresponding forcing are detectable in the observa-

tions. If the scaling factors are inconsistent with zero and

consistent with unity, then the model-simulated response

patterns are consistent with the observed changes. As

models may underestimate precipitation variability, the

uncertainty ranges of the scaling factors were checked for

robustness against a doubling of the model noise variance

(Zhang et al. 2007; Polson et al. 2013, 2014).

d. Moisture budget analysis

To understand what specific processes are responsible

for the changes in precipitation amount, we examine a

vertically integrated moisture budget equation as in

Chou and Lan (2012):

P0 52hV
h
� =qi0 2 hv›

p
qi0 1E0 1 d0 . (1)

In Eq. (1),P is precipitation,E is evaporation,2hVh � =qi
is horizontal moisture advection, 2hv›pqi is vertical

moisture advection and is also referred to as the hori-

zontal flow convergence of the moisture term (Seager

et al. 2010), and d is the residual term, which represents

the transient eddies and contributions from surface pro-

cesses due to topography. Primes denote departures from

the climatology. The moisture convergence is usually the

leading contributor to the changes of precipitation,

and 2hv›pqi0 can be further decomposed into three

components: anomalous moisture convergence due to

the changes in moisture 2hv›pq0i (i.e., a thermody-

namic effect), changes in circulation 2hv0›pqi (i.e., a

dynamic effect), and nonlinear contribution of both

moisture and circulation changes 2hv0›pq0i. As the

nonlinear term is generally small and negligible, thus

the changes of the vertical moisture advection can be

further approximated as

2hv›
p
qi0 ’2hv›

p
q0i2 hv0›

p
qi . (2)

In Eq. (2), overbars and primes are climatology and

departures from the climatology, respectively.

3. Results

To ascertain whether the observed changes in the

distributions of EC precipitation amounts as a function

of daily precipitation intensity can be explained by in-

ternal climate variability alone or whether the external

forcing has played a role in driving the observed

changes, we first analyze the observed and simulated

trends of precipitation amount in each precipitation in-

tensity bin with the equal contribution to total pre-

cipitation amount. To facilitate discussion regarding

precipitation characteristics in this study, the observed

and simulated daily precipitation are defined by three

major precipitation categories based on the empirical

climatological histograms of daily precipitation amount

over the period 1956–2005: the bottom 35% (light pre-

cipitation), moderate precipitation (within the range of

35%–90%), and the top 10% (heavy precipitation).

The 1956–2005 climatological histograms for daily

precipitation amount and frequency for the individual

model ensemble mean andMME are found to be similar

in shape to the observations (Fig. 1). The station data

show much lower frequencies and lower contributions

for light-to-moderate precipitation (,20mmday21) but

higher frequencies and higher contributions for heavy to

very heavy precipitation (P . 35mmday21) than the

model data, which are averaged precipitation rates

over a grid box ranging from approximately 1.58 to 2.88
(Table 1). Some of these differences result from the

different data resolutions, with the area-averaging in the

model data reducing the local intensity of heavy pre-

cipitation, thereby shifting the frequency and amount

distributions of daily precipitation intensity toward

more light–moderate events. Nevertheless, this model

bias is consistent with the ‘‘drizzling problem’’ found in

previous studies (e.g., Dai 2006b; Sun et al. 2007). De-

spite these quantitative differences, all models show a

gamma-like distribution of precipitation amount with

a peak around the intensity of 4.0–10.0mmday21 and a

long tail toward high precipitation intensity (Fig. 1a).

Additionally, the frequency decreases rapidly with in-

creasing daily precipitation intensity (Fig. 1b). These

basic features are consistent with the observations.

The changes in precipitation characteristics are ana-

lyzed based on the linear trends in the shape of the an-

nual distributions of the daily precipitation amount

during the whole year, as measured with 20 precipitation

intensity bins, each with an equal amount of pre-

cipitation (Fig. 2). The locations of the bins are de-

termined separately for each dataset (method details of

the calculation of precipitation characteristics are de-

scribed in section 2b). The ranges of the 20 bins in the

observations and simulations are given in Table 3. The

observations (black lines and gray bars in Fig. 2) clearly

show a decreasing trend for events with daily pre-

cipitation intensity below the 35th percentile and an

increasing trend for events above the 55th percentile
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averaged over eastern China. Given the strong influence

of the East Asian monsoon on the precipitation in

China, the observed shift of the distribution of pre-

cipitation amount during the rainy season (fromApril to

September) and dry season (from October to the next

March) are also calculated. As shown in Fig. 2a, the

characteristics of decreased light precipitation and in-

creased heavy precipitation are evident in the changes in

the distribution of precipitation amount in both the

rainy season and dry season. So the observed shifting of

the daily precipitation amount distribution toward

heavy precipitation is not seasonally dependent, con-

sistent with previous study (Jiang et al. 2014), which

suggests the observed percentage magnitude of daily

precipitation frequency shifting from light to pre-

cipitation is more obvious in winter than summer. Thus,

in the following analysis, we only focus on the changes in

the annual distribution of the daily precipitation amount

during the whole year.

The MMEs for the GHG forcing simulations show a

tendency toward more intense precipitation amounts

over EC, whereas the AA forcing simulations exhibit an

approximately opposite change in the distributions of

precipitation amount, with large decreases in heavy

precipitation and slight increases in light precipitation.

Although the AA effect partly offsets the shift in the

amount distributions of daily precipitation toward

heavier precipitation under GHG forcing, we witness a

relatively reasonable match in the long-term changes in

the shape of the daily precipitation amount distribution

between the observed trends and the responses to ALL

forcing, or between the observations and responses to

ANT forcing, with the shift toward heavier precipitation

mainly occurring in the top 10% precipitation intensity

bins. We note that the NAT forcing simulations show a

weak tendency in the precipitation amount distribution

to shift from weak precipitation events to intense pre-

cipitation events, but the observed trends for all pre-

cipitation intensity bins are clearly larger than the

model-simulated response to NAT forcing. The gen-

eral consistency in the changes of the precipitation

amount distribution between the observations and the

ALL, ANT, and GHG forcing ensemble simulations

over EC implies that the observed shift in the distribu-

tion of daily precipitation amount is closely related to

the anthropogenic climate forcings.

Quantitatively, the observed bottom 35% light pre-

cipitation averaged over EC shows a statistically signif-

icant decreasing trend of 23.5mmdecade21 at the 5%

level (two-tailed Student’s t test), whereas the top 10%

heavy precipitation exhibits an increasing trend of

2.3mmdecade21, which is statistically significant at the

0.05 level (Figs. 3 and 4). The amount of precipitation

associated with moderate precipitation events over EC

also shows an increasing trend of 2.4mmdecade21, but

is not significant at the 0.1 level (figure not shown).

Spatially, observed bottom 35% light precipitation

exhibits a regionally consistent decreasing trend over

EC (Fig. 5). As expected, given the overall increase

in daily precipitation amount, the predominantly de-

creasing trends over EC for light precipitation is

matched by predominantly increasing trends at higher

intensities (Fig. 5). The simulations, including GHG

forcing, generally show similar behavior as the obser-

vations in the time series and trend patterns for the

bottom 35% light precipitation and top 10% heavy

precipitation, respectively (Figs. 3 and 5), suggesting

that the observed decrease in light precipitation and

increase in heavy precipitation mainly come from the

contribution of GHG forcing. Anthropogenic aerosols

partly offset the contribution of GHGs. Based on the

trend estimates for the area-weighted average over EC,

observations and MME of ALL, ANT, GHG, and NAT

forcing show a consistently decreasing trend in the

bottom 35% light precipitation and increasing trend in

the top 10%heavy precipitation, respectively (Figs. 3 and 4).

FIG. 3. Five-year mean precipitation amount anomalies (mm)

from 1956 to 2005 for the (a) bottom 35% light precipitation and

(b) top 10% heavy precipitation averaged over EC. Anomalies are

with respect to the mean for 1956–2005. Black lines are for the

observations. The other colored lines are for the MME of the ALL

(red lines), ANT (brown lines), GHG (blue lines), AA (orange

lines), andNAT (green lines) forcing simulations, respectively. The

light pink, light brown, light blue, yellow, and green shadings show

the 10%–90% range of the ALL, ANT, GHG, AA, and NAT

forcing ensembles, respectively.
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In the MME of AA forcing, the bottom 35% light

precipitation and top 10% heavy precipitation amount

exhibit an increasing and decreasing trend, respectively

(Figs. 3 and 4). AA forcing has reduced the increase of

moderate precipitation, cancelling out the positive

contribution from GHG forcing and causing the de-

crease in moderate precipitation in the ALL and ANT

forcing responses (Fig. 2). As indicated in Table 1,

CCSM4 and GFDL-ESM2M include only the direct

effect of aerosols, and the other nine modes include both

the direct and indirect effects of aerosols. To tease out the

indirect effect of aerosol, we have tried producing Fig. 5

for just themodels that include the aerosol indirect effect.

It is shown that the results derived from those models

with aerosol indirect effects are similar with that of all

available multimodel ensemble means (Fig. 6). The esti-

mated contribution of NAT forcing to the observed

changes in precipitation amount is negligible.

To determine the causes of the observed changes in

the distribution of precipitation amount, we estimated

the contributions of the individual external forcings

to the observed precipitation trends by regressing the

observed trends of the precipitation amount distribution

onto the simulated distribution trends using the optimal

fingerprint analysis. The regression vector consisted of

the linear trends calculated for each of the 20 intensity

bins. As shown in Fig. 6, the results confirm that external

forcing has played a substantial role in driving the ob-

served shift in the amount distribution of daily pre-

cipitation over EC. The fingerprint of ALL forcings is

detected in the observations, and the model-simulated

responses of the precipitation amount distribution to

ALL forcings are consistent with the observed shift, with

the scale factor b significantly larger than zero and

consistent with 1.

To ascertain which forcing components were domi-

nant in driving the detected response, the observed

trends of the 20 precipitation intensity bins were then

regressed onto the ANT, GHG, AA, and NAT forcing

responses separately (Fig. 7a). The scale factor b for

ANT is consistent with 1 and the corresponding residual

is consistent with internal variability, indicating that the

responses to ANT forcing alone are detected in the

observed shift in the amount distribution of daily pre-

cipitation. But the scale factor b for NAT forcing is

significantly greater than 1 and the corresponding re-

sidual is not consistent with internal variability, sug-

gesting either that themodeled response toNAT forcing

is significantly underestimated compared to the ob-

served response and cannot account for the observed

shape in changes of the precipitation amount distribu-

tion or, more likely, that the response is strongly de-

generate with the response to ANT forcing; both

possibilities are consistent with the visual inspection of

Fig. 2. Combined with the comparable magnitude and

confidence interval of b betweenALL andANT forcing,

it is concluded that ANT forcing is primarily responsible

for the forced changes in the ALL fingerprint detected

in the observations. Additionally, GHG forcing is de-

tected in the observed changes, with b significantly

larger than zero and passing the residual consistency

test. Meanwhile, the scale factor b for GHG forcing is

smaller than 1, suggesting that models overestimated the

observed shift, consistent with the larger increases of the

top 10% heavy precipitation amount in GHG forcing

simulations than in observations (Fig. 4). However, the

AA forcing response is not detected in the observed

change, with the 90% confidence interval of b for AA

forcing being negative (i.e., the shape of the change is

opposite that of the observations). Consequently, it is

concluded that the detected responses in ALL and ANT

forcing are dominated by GHG forcing.

Single-signal regression neglects the possibility of

correlation between signals; thus, to distinguish the in-

fluence of one forcing from the others, multisignal de-

tection is needed. To ascertain the separately detectable

influence of ANT forcing on the observed changes in the

precipitation amount distribution from NAT forcing,

two-signal analyses for ANT forcing and NAT forcing

were performed (Fig. 7b, left-hand side). The detectable

effect of ANT forcing can be separated from NAT

forcing, with b inconsistent with zero for ANT forcing

and significantly larger than one for NAT forcing and

the successful passage of the corresponding residual

FIG. 4. Linear trends of precipitation amount (mmdecade21)

during 1956–2005 for the bottom 35% light precipitation at left and

top 10% heavy precipitation at right averaged over EC. Black bars

are for observations. Red, green, brown, orange, and green bars are

for MME of the ALL, ANT, GHG, AA, and NAT forcing simu-

lations, respectively. Gray symbols represent different models.
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consistency test, although the large-scale factors on

NAT indicate some model deficiencies in simulating

observed changes. Nevertheless these results support

the hypothesis that anthropogenic forcings has had a

detectable influence on the observed daily precipitation

amount distribution.

We now investigate whether we can further decom-

pose the ANT forcing into different anthropogenic

forcing factors. The ANT forcing is decomposed into

GHG forcing and AA forcing and the two-signal ana-

lyses for GHG forcing and AA forcing was done

(Fig. 7b, right-hand side). The result indicates that the

FIG. 5. Linear trends (%decade21) in precipitation amount from 1956 to 2005 over EC, for the bottom 35% light precipitation in the

(a) observations and theMME of the (b) ALL, (c) ANT, (d) GHG, (e) AA, and (f) NAT forcing simulations. (g)–(l) As in (a)–(f), but for

the top 10% heavy precipitation. The black dotted areas indicate that the trends in precipitation amount are statistically significant at the

0.1 level of a two-tailed Student’s t test.
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GHG forcing is detected but the AA forcing is not and

its magnitude is reduced to zero. The detectable in-

fluences of GHG forcing on the precipitation amount

distribution still holds in the two-signal regressions and

can be separated fromAA forcing when the estimates of

internal variance are doubled.

It is concluded that the detected shifts in the amount

distribution of the observed daily precipitation intensity

are likely largely in response to the overall effects of

anthropogenic forcings. There is no clear evidence from

the optimal detection results for the effects of aerosol

forcing having offset the effects of greenhouse gas

forcing, although degeneracy between the responses to

greenhouse gas and aerosol responsemakes it difficult to

distinguish between them in this way. While the scaling

factors on ALL and ANT are consistent with 1 in a

FIG. 6. As in Fig. 5, but for just the models that include the aerosol indirect effect.
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single-signal regression the scaling factor on GHG is

significantly less than 1 (Fig. 7a), providing some support

to the hypothesis that aerosol forcings have offset the

greenhouse gas response. This hypothesis is now in-

vestigated further.

Precipitation over any land region is contributed by

the water vapor carried from the surrounding areas and

local evaporation, which has relatively small contribu-

tion; thus, anomalous precipitation is directly related to

the moisture supply. There are three main moisture

supply sources for the East Asia precipitation: a strong

moisture transport by southwesterlies from the Bay of

Bengal, another strong transport by southeasterlies

from the western Pacific, and a weak transport from the

South China Sea (Fig. 8). Moreover, northern EC is

affected by aweakwater vapor transport associated with

the midlatitude westerlies. The water vapor transport

brings the warm and sufficient moisture from the adja-

cent oceans and favors precipitation over EC, becoming

one the most important components of the East Asian

monsoon system (Zhou and Yu 2005).

In the GHG simulations, globally consistent warming

(Fig. 9d) causes a significant increase in the atmospheric

moisture content (Fig. 10b). The largest percentage in-

creases of the precipitable water are centered over the

western tropical Pacific and Eurasia, especially western

China, where the surface air temperature also exhibit a

larger warming than other regions. These simulated

trends in precipitable water are similar to those observed

trends of previous studies (Dai 2006a; Durre et al. 2009).

Additionally, the warming trends over land are stronger

than those over adjacent oceans, enhancing the land–sea

thermal contrast and leading to the strengthening of the

FIG. 7. Results fromoptimal detection analyses of changes in the distribution of precipitation amounts as a function of

daily precipitation intensity bins over the period 1956–2005. (a) Single-signal regression coefficients of observed vs

simulated changes in daily precipitation amount distribution for theALL,ANT,GHG,AA, andNAT forcing. (b) Two-

signal regression forANTandNAT,GHG,andAA, respectively. Best estimates (dots) and5%–95%uncertainty ranges

(error bars) of regression coefficientsb are displayed.Dotted error bars show 5%–95%uncertainty ranges ofbwhen the

internal variability is doubled. The residual consistency test is passed in all cases except NAT forcing in (a).

FIG. 8. Climatological distribution of atmospheric column precip-

itable water (shading; kgm22) andwater vapor flux (vector; kgm s21)

derived from (a) JRA-55 and (b)MMEof historical simulations of all

external forcings. The box indicates EC.

15 FEBRUARY 2017 MA ET AL . 1391

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/08/21 09:16 PM UTC



climatological southerlies blowing from the western Pa-

cific and Indian Oceans to China. Under the combined

effects of increasing moisture and strengthening south-

erlies (i.e., the positive contribution of both the thermo-

dynamic and dynamic effects; Fig. 11), the strengthening

of moisture convergence dominates the increase of pre-

cipitation.Evaporation and horizontalmoisture advection

also contribute positively to the increase of precipitation

butwith smaller amplitude than themoisture convergence

term (associated with the vertical moisture advection).

The contribution from residual term is nearly negligible.

Thus, the increased water vapor transport to EC from the

Bay of Bengal, South China Sea, and western Pacific adds

to the increased midlatitude westerlies’ water vapor

transport (Fig. 10b) and thereby is favorable for heavy

precipitation over EC. In contrast, AA forcing induces

surface cooling (Fig. 9e) and a reduction in atmospheric

water vapor (Fig. 10c); the stronger surface cooling over

land than over adjacent oceans reduces the land–sea

thermal contrast and leads to a weakening of the clima-

tological southerlies. As a result of the negative contri-

bution of both the thermodynamic and dynamic effects

(Fig. 11), the decreased moisture convergence over EC

(Figs. 10c and 11) is unfavorable for the occurrence of

intense precipitation. The surface temperature shows in-

significant change in the NAT forcing simulations. The

surface warming pattern in the ALL and ANT forcing

simulations and observations resemble that of GHG

forcing (Fig. 8), but surface cooling induced by AA forc-

ing offsets the increase in water supplies over EC, such

that the water vapor transport in the ALL (and ANT)

forcing simulations is weaker than those in the GHG

FIG. 9. Linear trends (shading; K decade21) of near-surface air temperature from 1956 to 2005 in (a) GISTEMP,

(b) ALL, (c) ANT, (d) GHG, (e) AA, and (f) NAT forcing MME. The black dotted areas indicate that the cor-

responding trends are statistically significant at the 0.01 level of a two-tailed Student’s t test. The box indicates EC.
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forcing simulations. Thus, the shift in the precipitation

amount distribution from light precipitation to heavy

precipitation under ALL (and ANT) forcing is weaker

than that under GHG forcing.

4. Summary and discussion

a. Summary

In this study, the optimal fingerprinting analysis was

performed on EC precipitation from 1956 to 2005 us-

ing CMIP5 historical simulations. We provide evi-

dence for the first time that anthropogenic forcing has

had a detectable and attributable influence on the

distribution of daily precipitation amounts over EC

during the second half of the twentieth century. We

also provide some evidence that the observed shift

from weak precipitation to intense precipitation is

primarily due to the contribution of GHG forcing, with

AA forcing offsetting some of the effects of the GHG

forcing. The physical processes behind the observed

shift in the amount distribution of the daily pre-

cipitation are clearly illustrated through investigation

of the changes in water vapor supply simulated by the

CMIP5 historical runs driven with different forcings.

Under GHG-induced warming, increased atmospheric

precipitable water and enhanced land–sea thermal

contrast cause the water vapor transport to EC from

the adjacent oceans via southerly and midlatitude

westerly winds to strengthen, thereby favoring heavier

precipitation over EC. However, the countering ef-

fects of surface cooling induced by anthropogenic

aerosols meant that some of this enhanced transport is

cancelled out by AA forcing.

b. Discussion

Based on the present study, both the detectable in-

fluences of the GHG and ANT forcing on the observed

shift in the distribution of the daily precipitation

amount toward intense precipitation are substantial, in

agreement with the previous study (Liu et al. 2015),

which also attributed primarily the observed decrease

(increase) in light (heavy) precipitation in eastern

China to global warming. The GHG-induced warming

is likely to continue in the future, with the change in

global surface temperature at the end of the twenty-

first century likely to exceed 1.58C relative to the

present level for all representative concentration

pathway (RCP) scenarios except RCP2.6 (IPCC 2013).

This is set to cause increased shifts toward heavier

precipitation. Because of the severe human health ef-

fects of polluted air caused by aerosol emissions, many

countries around the world, especially China, have

been reducing the emissions of sulfur aerosols (Wild

FIG. 10. Linear trends of atmospheric column precipitable water

(shading;%decade21) andwater vaporflux (vector; kgms21 decade21)

in the (a) ALL, (b) GHG, and (c) AA forcing MME. The white

dotted areas indicate that the trends of the convergence of the

water vapor flux are statistically significant at the 0.1 level of

a two-tailed Student’s t test. The box indicates EC.

FIG. 11. Linear trends [mmday21 (50 yr)21] of regionally aver-

aged precipitation and each term of the moisture budget equation

over EC in the MME of the ALL (red), GHG (blue), and AA

(orange) forcing simulations. From left to right [see Eqs. (1) and

(2)], P is precipitation, E is evaporation, 2,vdq. is horizontal

moisture advection,2,wdq. is vertical moisture advection, TH is

the thermodynamic term, DY is the dynamic term, and d is the

residual term.

15 FEBRUARY 2017 MA ET AL . 1393

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/08/21 09:16 PM UTC



et al. 2008; Zhang et al. 2012). If the current efforts to

reduce the emissions of aerosols and limit air pollution

continue in the future, then this could cause even

further shifts toward heavier precipitation over EC. In

any event, further shifts toward heavier precipitation

are expected as shown in the model projection under

the RCP8.5 scenario (Fig. 12). The significant shift in

precipitation to less light precipitation and more in-

tense precipitation could pose major challenges to the

management of the increased risks of severe floods and

droughts.

One issue that is worthy of attention is why the in-

clusion of anthropogenic aerosols surprisingly makes

the model results more inconsistent with the observed

trends (see Figs. 2 and 4). This might be because cur-

rent climate models do not have all the capacities

needed to fully represent the multiple aerosol effects

on precipitation. It is well known that anthropogenic

aerosols from air pollution can affect precipitation via

aerosol–radiation interaction (ARI) and aerosol–

cloud interaction (ACI) effects (IPCC 2013). Solar

radiation can be scattered and/or absorbed by aerosols

via the ARI effect, which induces surface cooling and

atmospheric heating and potentially enhances atmo-

spheric static stability and suppresses rainfall (Menon

et al. 2002; Ramanathan et al. 2005). Meanwhile, in-

creased cloud condensation nuclei due to anthropo-

genic aerosols can also influence cloud microphysics

and rainfall through the ACI effect; that is, as sum-

marized in Qian et al. (2009), more aerosol particles

lead to more cloud droplets but with smaller average

drop size under identical ambient fields. In fact, Qian

et al. (2009) found that cloud droplet number con-

centration is increased and cloud droplet size is re-

duced under heavily polluted conditions in eastern

China, which results in a significant decline in raindrop

concentration and a delay in raindrop formation be-

cause collision and coalescence are less efficient when

cloud droplets are small.

In addition, as noted by Rosenfeld et al. (2008),

suppression of precipitation by aerosols from shallow

clouds may result in an increase in precipitation from

deeper clouds at the cloud scale (Rosenfeld et al.

2008), the so-called aerosol invigoration effect. This

has been demonstrated by some modeling studies that

show that delay of early rain by aerosols can result in

greater amounts of cloud water and rain intensities at

the later stage of the cloud (Liu et al. 2002). This

suggests that aerosols may increase the heavy storms

and shift precipitation rates from light to moderate and

heavy rains.

While the ARI effect is included in most of CMIP5

models we used in this study, only a very small number

of models fully or partially include the ACI effect, and

none of models includes the aerosol invigoration effect,

which implies that current climate models may not be

able to fully capture the observed precipitation signals

induced by aerosols.

Here, another issue that is worthy of attention is that

the analysis in this study mainly focuses on the distri-

bution of the daily precipitation amount throughout the

year. However, the influences of GHGs and AAs could

be different in different seasons because of different

aerosol emission patterns and regional circulation.
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